
W Z  mz 
l l z  x? 
- 4  n z z  

Chemoenzymatic routes to chiral (non-racemic) cyclopropanes. 
Preparation of a key intermediate for the synthesis of 
(1R)-cis-pyrethroids 
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The microbial oxidation product 2 (X = Br) has been con- 
verted into the chiral (non-racemic) cyclopropane 11, a 
synthon for the commercially significant (1R)-cis-pyreth- 
roid class of insecticides. 

Monochiral cyclopropyl compounds continue to attract signifi- 
cant atten tion, not least because cycl opropane-containing 
natural products are ubiquitous and the majority of such 
compounds are enantiopure materials. Especially notable 
examples include the anti-mitotic agents curacins A-C,' the 
insecticide pyrethrin I 1 ,  and phorb01,~ ester derivatives of 
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x 
2 (X = Me, CI, Br, CN etc) 

which are powerful tumour promoting agents. Interestingly, two 
multiply-cyclopropanated and monochiral natural products, 
viz. FR-900848 (a potent anti-fungal agent)4 and U-106305 
(a cholesteryl ester transfer protein inhibitor),' have been dis- 
covered recently. In the non-natural products arena, there is 
considerable interest in chiral (non-racemic) aminocyclopropyl 
carboxylic acids as conformationally restricting entities which 
can be incorporated into bioactive peptides, thereby causing 
stabilisation of the peptide towards enzyme cleavage.6 It is 
against such a background that various methods for the syn- 
thesis of enantiopure cyclopropanes are being pursued. The 
more traditional approach centres on the diastereofacially 
selective cyclopropanation of alkenes containing a chiral 
auxiliary (or related themes '). Recently, notable success has 
also been achieved in the catalytic asymmetric cyclopropan- 
ation of prochiral alkenes and allylic alcohols. Such efforts are 
highlighted by the contributions of, inter alia, Charette,7u 
Corey,' Davies,"' Denmark '' and Doyle.12 

cis-l,2-Dihydrocatechols of the general type 2, which are 
produced (generally in high enantiomeric excess) via microbial 
oxidation of the corresponding mono-substituted aromatic 
 omp pound,'^ offer interesting possibilities as starting materials 
for the synthesis of enantiopure cyclopropyl compounds. For 
example, cyclopropanation of either face of a given double 
bond within such dienes would give two pairs of diastereoiso- 
meric cyclopropanes which, when subjected to oxidative cleav- 
age of the cis-diol moiety, should lead to enantiomeric pairs of 
open-chain cyclopropanes. Alternatively, cyclopropanation of 
the equivalent face of either double bond in diene 2 followed by 
removal of the X substituent gives a further set of enantiomeric 
pairs of cyclopropyl compounds. Other intriguing possibilities 
include Ullmann-type coupling of cis-l,2-dihydrocatechols 
(where X = Br or I) to give bis-dihydrocatechols which, when 
subjected to exhaustive cyclopropanation and subsequent oxi- 
dative cleavage of the cis-diol units, might serve as precursors to 
enantiopure poly(cyc1opropane)s related to FR-900848 and 

We now report the first use of microbially-derived cis-l,2- 
dihydrocatechols in the targeted synthesis of chiral (non- 
racemic) cyclopropanes. Specifically, we describe the applica- 
tion of compound 2 (X = Br) (>98?4 ee) to the synthesis (in near 
enantiopure form) of the cyclopropane 1 l , l 4  a key synthon for 
the preparation of the highly active and commercially signifi- 
cant (1 R)-cis-class of pyrethroid insecticides, the most notable 
member of which is deltamethrin 3.' 

The synthetic sequence (Scheme 1) starts with the bis(tert- 
butyldimethylsilyl) ether 4 (94%) {[a],  +30.5 (c 4.2, 20 "c)t}$ 
which is obtained by standard methods from compound 2 
(X = Br). Treatment of diene 4 with dibromocarbene, generated 
under phase transfer conditions from bromoform and aqueous 
sodium hydroxide, afforded the adduct 5 (70% at 70% conver- 
sion) {[a],  -64.2 (c 3.8, 20 "C)} as the only isolable product of 
reaction. This latter compound was subjected to reaction, at 
-78 "C, with 15 mol. equiv. of the higher order cuprate 
Me2Cu(CN)Li,15 which resulted in formation of the trimethyl- 
ated compound 6 (68%) { [a] ,  - 1.3 (c 3.8, 20 "C)}. Ozonolytic 
cleavage of the double bond within the A'-carene 6 then 
afforded the keto aldehyde 7 (78%) {[a],  -24.5 (c 3.8, 20 "C)} 
which was oxidised to the corresponding acid 8 using Pinnick's 
sodium chlorite (NaCIO,) procedure.16 This latter compound 

U-106305.' 

?All new compounds had spectroscopic data (IR, NMR and mass 
spectra) consistent with the assigned structure. Satisfactory combus- 
tion and/or high resolution mass spectral analytical data were obtained 
for all new substances and/or suitable derivatives. 
1 Compound 4 was chosen as the starting material because of the high 
levels of regio- and diastereo-selection observed on its reaction with 
dibromocarbene. In contrast, when various appropriately protected 
derivatives of cis-l,2-dihydrocatechol 2 (X = Me) react with dihalo- 
genocdrbenes, mixtures of regioisomeric adducts are observed (see, 
for example, M. G. Banwell and M. P. Collis, J C/7em. Soe., Chem. 
Commun., 199 1, 1343). 
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Llv 8 Y = COzH, R = SiMe2Bu' 

10 Y = COzMe, R = H 

Scheme 1 Reugents and conditions: i, CHBr, ( 5  mol. equiv.), 50% w/v 
aq. NaOH, PhCH,NEt,CI, C6H6, 5-18 "C, 16 h; ii, Me,Cu(CN)Li, (15 
mol. equiv.), Me1 (40 mol. equiv.), THF-Et,O, -78 to 0 "C, 0.5 h; iii, O3 
(excess), CH2CI2, -78 "C, 5 min, then Me,S (excess), -78 to 18 "C, 16 h; 
iv, NaClO, (3 mol. equiv.), NaH,PO, ( I  mol. equiv.), 2-methylbut-2-ene 
(4 mol. equiv.), Bu'OH-THF-H,O, 18 "C, 3 h; v, CH2N2 (excess), 
Et,O-CH,CI,, 18 "C, 2 h; vi, TBAF.H20 (3 mol. equiv.), THE 18 "C, 
3 h; vii, Pb(OAc), (2 mol. equiv.), CaCO, (12 mol. equiv.), CH,CI,, 
0 "C. 0.75 h 

was immediately converted (using diazomethane) into the cor- 
responding methyl ester 9 (86% from 7 )  {[aID -20.7 (c 2.3, 
20 "C)) which could be disilylated with tetrabutylammonium 
fluoride (TBAF) monohydrate to give compound 10 (60%)) 
{ [a]D +29.7 (c 1.9, 20 "c)).  Finally, lead tetraacetate-promoted 
cleavage of diol 10 afforded the target cyclopropane 11 (71%) 
{[a],, -55 (c I .3,20 "C, CHCI,); lit.,I4 [a] ,  -76.9 (c 17.1, 20 "C, 
acetone)}. 

The present work provides a first generation synthesis of 
compound 11 from 2 (X = Br) and highlights the potential 
utility of microbially-derived cis- 1,2-dihydrocatechols in the 
preparation of monochiral cyclopropanes. Current efforts are 
being directed towards, inter ulia, a more atom-economical 
pyrethroid synthesis wherein the alkenyl bromide moiety 
contained within compound 2 ( X =  Br) is exploited in the 
formation of the vinylic gem-dibromide unit associated with 
deltamethrin 3. 

Experimental 
Methyl (1 R,3S)-3-formyI-2,2-dimethyIcyclopropane-l- 
carboxylate 11 
A solution of lead tetraacetate (208 mg, 0.47 mmol) in CH2Cl2 
(4 ml) was added dropwise to a magnetically stirred mixture of 
compound 10 (50 mg, 0.22 mmol) and calcium carbonate (266 
mg, 2.66 mmol) in CH2CI, (4 ml) maintained at 0 "C. After 45 
min Et20 (20 ml) was added to the reaction mixture, which was 
then filtered through a Celite pad. The filtrate was concentrated 
under reduced pressure and the residue subjected to flash 

chromatography (silica 1 : 1 hexane-Et,O elution) to give, after 
concentration of the appropriate fractions ( R f  0.6), compound 
11 l4 (24 mg, 71%) as a clear colourless oil, [& -55 (c 1.3, 
20 "C, CHCI,) [Found: (M - CH,')', 141.0553, CHH,203 
requires ( M  - CH,')', 141.05521; v,,,(NaCl)/cm-' 1729 and 
1701;6,(3O0MHz,CDCI3)9.75(d, J6 .5  Hz, 1 H), 3.71 (s, 3 H), 
2.13 (d, J 8.7 Hz, 1 H), 1.85 (dd, J 6.5 and 8.7 Hz, 1 H), 1.55 
(s, 3 H), 1.27 (s, 3 H); &(75 MHz, CDCI,) 200.8, 170.7, 52.5, 
41.1, 36.3, 30.2, 28.5, 15.2; i d z  (70 eV) 141 (35%, M - CH,'), 
97 (100, M - H,CO,C'). 
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